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SATISFACTION OF ASYMPTOTIC BOUNDARY CONDITIONS IN THE
NUMERICAL SOLUTION OF BOUNDARY-LAYER EQUATIONS
by Philip R. Nachtsheim" and Paul Swigert**
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio
ABSTRACT
3397/
A method for the numerical solution of differential equations of the
boundary-layer type is presented. The asymptotic boundary conditions are
satisfied at the edge of the boundary layer by adjusting the initial con-
ditions so that the mean square error between the camputed variables and
the asymptotic values is minimized. A least squares convergence criterion
is used to propose a method of solution in which the edge of the boundary
layer is approached in steps. The convergence rate to a solution is
rapid and appears to be insensitive to the initial guesses of the initial
conditions. Use of a least-squares convergence criterion leads to the

unique solution even in the case of retarded main stream flows. A description

of the method is given, and two examples taken from boundary-layer theory are
worked. N

INTRODUCTION
The numerical integration of the ordlnary differential eqpatlons of
boundary-layer theory 1nvolves the satlsfactlon of asymptot1C'

boundary conditions; that is, some boundary conditions are specified at the
initial point or wall, and others are specified as limits that must be ap-

proached at large values of the independent variable corresponding to the
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edge of the boundary layer. In order to integrate the differential equations
numerically from the wall to the edge of the boundary layer, it is necessary
to specify as many additional conditions at the wall as there are conditions
to be satisfied at the edge of the boundary layer. These additional initial
conditions have to be varied in order to satisfy the conditions at the edge
of the boundary layer. All methods that have been used to find the proper
initial conditions rely on the fact that, for large values of the independent
variable, the integrals of the differential equations depend on the initial
conditions. One method that has been used to find the proper initial con-
ditions, called the initial-value method (ref. 1), is that of obtaining
integrals of the differential equations with guessed initial conditions;

that is, an attempt is made to integrate the differential equations to the
edge of the boundary layer. If this éan be accomplished, corrections are
made for the initial guesses by the Newton-Raphson method, and the process
is repeated until convergence is achieved.

In order to carry out this iteration, additional differential equations
have to be integrated. There will be as many additional differential equa-
tions as there are initial conditions to be varied. The integrals of these
additional eguations called perturbation equations give the rate of change
of the integrals of the original differential equation with respect to the
initial conditions.

Another method that has been used, called quasilinearization (ref. 2),
is similar in principle to the initial-value method, except that the dif-
ferentlsl equations are linearized. The resulting linear differential equa-
tions for the current approximation are inhomogeneous, since they also contain

the previous approximation as members.




The perturbation equations of the initial-value method correspond to a
complementary function of the linear differential equations of the quasi-
linearization method. 1In application, the two methods are different in that,
in the quasilinearization method, the complementary functions are used to
obtain solutions to the inhomogeneous linear differential equations, whereas
in the initial-value method, the solutions to the perturbation equations are
used to adjust the starting values at the initial point. A disadvantage
associated with the quasilinearization method is that functions representing
the previous approximation have to be stored in order to construct the current
approximation. Furthermore, the solution of the inhomogeneous equation ob-
tained by combining complementary solutions and a particular integral is
usually not well determined except near the origin or initial point, as pointed
out by Hartree (ref. 3). The solutions of the perturbation equations, however,
can be used to determine the proper initial conditions closely. This 1s the
procedure that is followed in the initial-value method.

Both methods have been used to obtain solutions of the boundary-layer
equations., Neither of these methods, however, has solved the problem of when
to stop the integration. Since one boundary condition is specified as a limit
that must be approached at large values of the independent variable, the inte-
gration should be stopped at a value of the independent variable that is suffi-
ciently large so that the various functions are approaching their asymptotic
values. This value of the independent variable could properly be called the
edge of the boundary layer. In the various methods used to solve this problen,
this value of the independent variable must be guessed at beforehand. If the

guessed value is too small, the integrals of the differential equation may not



be able to satisfy the imposed conditions; or, there may be more than one
value of an initial condition that leads to integrals of the differential
equations that satisfy the imposed boundary conditions.

If the guessed value is too large, it is possible that the integrals
of the equations will diverge; or, that convergence to a solution is ex-
tremely slow.

Another problem that sometimes besets the numerical integration of the
boundary-layer equations is the apparent insensitivity of the integrals of
the boundary-layer equations to the initial conditions. This difficulty
appears in the integration of the Falkner-Skan differential equation (ref. 4).
All the integrals of the Falkner-Skan equation for the case of nonretarded
flows in the main stream tend to diverge except the ones with the proper
initial conditions; however, for the case of retarded flows, a solution with
any value of the initial condition near the correct one will eventually meet
the proper boundary condition at infinity. The unique solution was found by
Hartree (ref. 4) for retarded flows by imposing the additional condition that
the desired solution is the one that approaches the boundary condition most
rapidly from below. However, this behavior of the solutions can only be
learned from several trial runs.

In an effort to adapt the initial-value method to the solution of dif-
ferential equations with asymptotic boundary conditions, a method was developed
to eliminate the problem of when to stop the integration. This method of
solution is capable of satisfying the boundary conditions at the edge of the
boundary layer correctly; that is, the boundary values are approached asymp-

totically. This is accomplished by choosing the additional initial conditions




50 that the mean square error between the computed variables and the
asymptotic values is minimized. A least-squares convergence criterion is
used to propose a method of solution in which the edge of the boundary
layer is approached in steps. The convergence rate to a solution is rapid,
and convergence appears to be insensitive to the initial guesses of the
initial conditions. Use of a least-squares convergence criterion leads to
the unique solution even in the case of retarded main stream flows. A
description of the method is given and two examples taken from boundary-layer
theory are worked.
DESCRIPTION OF METHOD

A description of the method can best be achieved by referring to a
definite example of a boundary-value problem with an asymptotic boundary
condition. 1In Falkner and Skan's trestment of the laminar boundary layer
of an incompressible fluid, the following equation arises (see ref. 4)

" = - £f" + B(£'2 - 1) (1)
with the boundary conditions
n = O: f=f'=0
n = ot f'-1

The primes denote differentiation with respect to n, & measure of the dis-
tance from the wall. The dependent variable f is related to the usual
stream function. The potential flow is given by a power law. The flow
velocity outside the boundary layer in the main stream is proportional to
the distance along the wall raised@ to the power BAZ -B). For retarded

main stream flow B < O, and for nomretarded flow § > O.



In practice, the asymptotic boundary condition is replaced by the
condition that f' =1 to a sufficient degree of accuracy at n = Nedge’
where mnedge is the value of the independent variable at the edge of the
boundary layer. The boundary-value problem is equivalent to the problem
of finding a value of f"(0) for which the boundary condition at the edge
of the boundary layer is satisfied; that is, it is desired to find a

solution of the nonlinear equation
1 " -
fedge [f (O)] =1

at g = Nedge ’ where fédge = fi(nedge)' The function fédge[f”ﬂ)ﬂ

in this problem is not in general explicit, it will be expressed as a
function of f'"(0O) through an integration of equation (1). With the
notation x = £"(0), observe that a small change &x in x changes f'
by the amount

of!
3% = O

so0 that the necessary correction to a first approximation comes from the
solution of the linear equation

1
1=f'+§§-Ax

dx
at

N = MNedge*

The solution of the equation for Ax can be performed provided the
partial derivative of f' with respect to x can be evaluated at Nedge*
The partial derivative can be evaluated by forming the perturbation equation
for the function f'. This equation is obtained by differentiating the terms

in equation (1) appropriately. With the notation

_ of of
fX = &', f;( =’&—, etc.




The following perturbation equation is obtained

£'= - (£ + £'fy) + 2BL'Ty (2)
with the initial conditions

5 =0 f, =1£f =0, f; =1

Given an initial estimate of x = £f"(0O), the subsequent values of x
are computed automatically in the iteration procedure described previously.

The problem of where to stop the integration remains; that is, Nedge
is unknown. Figure 1(a) illustrates the difficulties that arise when the
boundary condition f' =1 is applied at a finite value of 1.

The data for figure 1(a) were obtained from calculations that are
described in detail subsequently. For the purpose of understanding the
results presented in this figure, the reader should know that equation (1)
was integrsted for specified values of f£"(0) with B = 1. The integration
was stopped at 1 = 5. Tentative values of Nedge will hereinafter be
referred to as Nstop*

Figure 1(a) shows f' and f" as & function of x = £"(0) at
Nstop = 5. It can be seen that there are two values of x that satisfy
the condition f' =1 when nstop is taken to be 5, namely x = 0.85 and
x = 1.23. Figures 1(b) and (c) show the two solutions corresponding to the
two values of x. The proper value of Xx can be determined by observing
where f" = 0. Fram figure 1(a) it can be seen that the correct value of
X 1is approximately 1.23.. It can be concluded from this illustration that

the satisfaction of the boundary condition f' =1 at Mstop = 5 does not

ensure the satisfaction of the asymptotic boundary condition on f', namely




that the value of ' approaches the value 1 asymptotically. In order to
satisfy the asymptotic condition at a finite value of 1, the condition

f' =1 and f" =0 should both be imposed (examination of the differential
equation (1) will reveal that all higher derivatives will be zero also);
that is, Ax should be chosen so that both equations

1=1F"+1f§ M (3)

0

£+ £y Mx (4)

are satisfied at This is in general impossible since there are

= Mstop®

two conditions and only one adjustable parameter, Ax. However, a satisfactory
solution that is consistent with the idea that the boundary condition cannot be
satisfied exactly at a finite value of 7 1is to seek the least-squares solution

of the preceding equations (ref. 5); that is

fy (L - £') - £"fy
ax = = 2 Z = (5)
7+
X X

In this way all the information contained in equations (3) and (4) is
retained.

The least-squares solution of equations (3) and (4) attempts to minimize
the sum of the squares of the errors in these equations as a function of Ax.
The value of x that gives Ax = 0 corresponds to the minimum with respect to
x of the quantity

2 + fnz (6)

E=(1-7")
as can be seen from equation (5). In figure 2, the quantity E is shown
plotted as a function of x for various values of Tgtop® The data for

figure 2 were also obtained from the calculations described subsequently.




For this example (B = 1 and nstop = 5) it is seen that the least-squares
solution gives a unique solution for x. It is this property, that the
minimpm of the sum of the squares of the appropriate boundary functions
corresponds to no change in the required initial conditions, that enables
satisfaction approximately of the asymptotic boundary condition at a finite
value of the independent variable. The edge of the boundary leyer could

be defined as that value of 17 for which the minimum E is less than some
preassigned small value as the range of integration is increased. This gives
a value of Nedge"

The concept of convergence in the least-squares sense permits modification
of the initial-value method in order to solve a wide class of boundary-layer
problems. To understand why the initial value method requires modification,
consider how the method can fail when it is applied to boundary-layer type
problems.

Recall that in the initial-value method, corrections are obtained to the
guessed initial conditions after integrating the differential equations to
the edge of the boundary layer. This method can fail if the initial guess is
so poor that the integration "blows up" (i.e., diverges beyond a prescribed
limit) before reaching the edge of the boundary layer.

This problem can be avoided and corrections to the initial conditions
can be obtained by attempting to minimize the mean square error between the
camputed solution and the asymptotic values before reaching the edge of the
boundary layer. The modification of the initial-value method consists then

of carrying out the minimizing process at any arbitrary value of Nstop® When
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this modified procedure is used, the choice of nst0p’ where the minimizing
process is first carried out, may be dictated by other considerations than
where the edge of the boundary layer is, such as keeping the variables
within prescribed limits so that the solution does not diverge. After the
minimum has been found and corrections to the initial conditions made at
the chosen value of Netop? the range of integration can be increased if
necessary.

If the value of the minimum found is not small enough, it will be
necessary to increase the range of integration. In this way, the edge
of the boundary layer is approached in steps by successively increasing
the range of integration until the correct initial conditions and the value
of Nedge are found.

For this example, the Falkner-Skan solution with B =1, it appears
the quantity E has a definite minimum at each value of 1 including
n =0 as can be seen from figure 2. The numerical solution of this example
will be described in the next section.

NUMERICAL SOLUTION

The method described in the previous section was programed in
FORTRAN IV, double precision on the IBM 7094II-7040 direct-couple system.
The boundary-layer and perturbation differential equations were rewritten
as systems of first-order differential equations and integrated with a
predictor-corrector (Adams-Moulton) subroutine using one correction per
step and a fixed increment.

The boundary-layer equations along with the perturbation equations

were integrated to the specified value of the independent variable. The
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corrections were then determined, and the process was repeated until the
relative change in the correction term equation (5) was less than a small
preassigned value. i

Extreme accuracy was not required at the smaller values of nstop
since the boundary conditions cannot be well satisfied there. A value of
1x10™8 was used at the larger values of Nstop to check the relative
change in the correction term. This small value seemed reasonable since
convergence is so rapid.

RESULTS OF NUMERICAL SOLUTION FOR EXAMPLE 1

Figure 3 shows the solution f' of equation (1) with B =1 as
a function of the independent varisble 1, for the first five trials needed
for convergence. With an initial guess of 1.0 for f£"(0), the equations
were integrated to a value of Mstop = 2 twice and to a value of
Nstop = © three times. Observe that, for the first integration, the
values of f' tend to deviate radically fram the correct solution at a
relatively small value of 1. If these calculations had been carried out
to a larger value of 1, the values of f' would have attained a magnitude
s0 large that any use of these large numbers in a Newton-Raphson scheme would
be meaningless.

The effect of Nstop ©B the convergence process is illustrated in
figures 2 and 4. PFigure 2 shows the error, equation (6), as a function of
£"(0) for different values of fgtopr Observe that by initially using a
small value for Nstop (“stop = 2 1in fig. 2) the range of meaningful initial
guesses is increased, that is, initial guesses that yield a relatively small

error. For extremely large values of Nstop the parabola-like curves in
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figure 2 degenerate to a vertical line, and the initial guess is limited to
the correct answer.

Figure 4 shows the effect of Nstop ©OF the convergence rate. The value
of f£"(0) after two trials is plotted against the initial guess of f£"(0)
for different values of Nstop* The distance of a point on these curves from
the straight line shown in the figure is a measure of the rate of convergence.
If a point remains on this line after two trials, there is no tendency toward
convergence at all. It can be seen from figure 4 that the points on the
curve for Nstop = 2 are always farther from the straight line than the points
on the curve for Nstop = 5. This indicates that the rate of convergence is
much greater for Nstop = 2 than for Nstop = 5 for all initial guesses of
£"(0).

To give an idea of the rate of convergence to a solution for this example
using an initial guess of f"(0) = 1, table I(a) is presented. Using quasi-
linearization and fiwve corrections Radbill (ref. 2) obtains a value of £"(0)
accurate to one decimal place compared with Yohner and Hansen (ref. 6), whereas
the method developed herein reached an answer after two corrections that agrees
with that of Yohner and Hanson to two decimal places. After two more corrections,
the value of £"(0) agrees with that of Yohner and Hansen (ref. 6) to within
2 units in the seventh decimal place. The last integration was performed as a
stopping criteria for the computer.

Computer time for the complete solution, using a step size of 2'4 was
approximately 0.05 minute.

This exsmple was also programed by single precision with good results.

The difficulty in using single precision presented itself in the form of reducing
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the range of initial guesses that could successfully be used to obtain the
correct answver.

Equation (1) was also integrated for the case of a retarded main stream
flow with B=-0.1. However, no additional conditions had to be imposed
such as those used by Hartree (ref. 4) in order to obtain the unique solu-
tion. The value of f£"(0), which was obtained by minimigzing.the mean
square error, agreed with the value obtained by Smith (ref. 7) for this
case to six decimal places.

EXTENSION TO SYSTEMS OF EQUATIONS

The least squares modification of the initial-value method described
previously for a differential equation with a single dependent variable can
easily be generalized to systems of equations. As an example of a problem
with two dependent varisbles, consider the boundary value problem for the
free-convection flow about a vertical plate. This example is taken from
reference 8. It consists of solving the differential equations

£f"=  3ff" + 2f'2 - h (7)
h" = - 3Prfh! (8)
with the boundary conditions
n = O: f=f'"=0,h=1
n = oo f'>0,h=->0

Again the primes denote differentiation with respect to 1 (a measure
of the distance from the wall), and the dependent variable f is related
to the usual stream function. The dependent variable h 1is proportional
to the temperature excess of the fluid over the ambient temperature, and

Pr denotes the Prandl number.
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Since there are two asymptotic boundary conditions to satisfy, two
additional initial conditions at the wall will have to be adjusted; that
is, values of x = £"(0) and y B8 h'(0) are sought that will satisfy

simultaneously the nonlinear equations

r 1" t _
fedge{f (0),h (o)] =0
Boage[7'(0),0'(0)] = 0
at = where f' = £ and h =h . The
" T]edge’ edge ‘nedgg edge (nedgg

| necessary first corrections to a first approximation x and y come from
8 solution of the linear equations

0

] 1 1
fr o+ fx AX + fy Ay

0

h + h, &x + hy Ay

at

Where f, = af', fo = éﬁl, etc. However, in order to
y
ox Jy
satisfy the asymptotic boundary conditions, the preceding equation must be

M = Neage*

supplemented by

| 0]

"'+ fg Ax + f§ Ny

0

h' + hy Ax + h& Ny

and Ox and Ay must be found such that the sum of squares of the errors

in the preceding four equations be & minimum. The least-squares solution

for those quantities is given by the solution of the following matrix equation:

f'2 + h2 + £'2 + n'2, f!f' + hoh + £'f" + h'h’ Ax
X X X X Xy X Xy Xy

y

F'F' 4+ h + £'F" + n'h’ 12 +h2 +f"2 + 12
Xy Xy Xy xy’ fy Yy y hy &y
1 1 1" " 1 1

_ f fx + hhX + T fx + h hx (9)

] 1 1Matt ] |
f fy + hhy + f fy + h hy

The values of x and y that gi@e X = AyveE O correspond to the

¥
minimum with respect to x and y of the quantity
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E=f'2+h2+f"2 412 (10)
The partial derivatives with respect to x and y that appear in
the equation (9) are obtained by integrating the appropriate perturbation
differential equations. The perturbation differential equations for the
x derivatives are
f;'= - S(fxf" + ff;) + 4f'f£ - hx (11)

and
hy = - 3 Pr(fxh' + fhy) (12)

with the initial conditions
n=0: fy=Ffy=hy=h =0;fg=1
The perturbation differentisl equations for the y derivatives are

f;'= - S(fyf" + ff§) + 4f'fy - hy (13)

hy = - 3Pr(fyh‘ + fh&) (14)
with the initiel conditions
n = 0: fy = f& = f§ = hy = 0; h& =1

Note that the equations for the y derivatives are the same as the
equations for the x derivatives. The integrals of these equations will
differ since the initial conditions are different.

Note also that there are as many additional systems of perturbation
equations to integrate as there are asymptotic boundary conditions to meet.

NUMERICAL SOLUTION OF EXAMPLE 2 AND RESULTS

The same general procedure used in the previous example was employed

to solve this example. One notable difference is that five trials were

needed at the larger value of Tstop? rather than the three trials of the

first example. This is probably because of the need of adjusting two initial
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conditions rather than one, and because an error in one initial condition
leads to an error in computing the correction term of the other.

The solutions of equations (7) and (8) are shown in figure 5 for
Pr = 0,733, DNote (as in the previous example) that the functions f' and
h of figure 5 diverge radically from the true solutions, for the initial
guesses of trial 1.

Table 1(b) shows the rapid rate of convergence for this more difficult
example. With initial guesses of 1.0 and - 1.0 for £"(0) and h'(0),
respectively, convergence is realized after two trials with nstop =72 and
five trials with Nstop = 8. The results are in close agreement with the
published values of Ostrach (ref. 8).

The effect of Nstop on the convergence process for this example
is illustrated in figures 6(a) and (b). ILevel curves for the error, equa-
tion (10), are plotted in the £"(0) plane for ngyoy = 2 in figure 6(a)
and for Netop = 5 in figure 6(b). As in the previous example, by using
a small value for nstop’ the range of initial guesses that yields a
relatively small error is again increased; that is, the area where E is
less than 1 is much greater in figure 6(a) than in figure 6(b). For
extremely large values of Netop? the area enclosed by the level curve
where E is less than 1 shrinks to a point, and the initial guess is limited
to the correct answer.

Computer time for the second example was about 0.15 minutes with a
step size of 2%, In both examples, the convergence was made insensitive
to the initisl guesses by choosing a small value of nstop for the first

two trials. The answer thus obtained for the initial conditions was good
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enough to step Nstop UP considerably. The error term may be made as

small as desirable by continuous stepping of Nstop* This error term may

also be used as & stopping criteria for camputer calculations and findings

Nedge automatically. |

CONCLUSIONS
The two main problems of integrating the boundary-layer equations, approx-
imating the missing initial conditions, and finding nedge’ have been reduced
to an automatic initial-value technique that is easily programed on high-speed
computers. The method appears to be insensitive to initial guesses and con-
verges quickly to the solution.
REFERENCES

(1) Fox, Leslie, "Numerical Solution of Ordinary and Partial Differential
Equations," Pergamon Press, 1962, ch. 5.

(2) Radbill, John R., "Application of Quasilinearization to Boundary-Layer
Equations," AIAA Journal, vol. 2, no. 10, Oct. 1964, pp. 1860-1862.

(3) Hartree, D. R., "Numerical Analysis," Oxford at the Clarendon Press,
1952, pp. 143-144.

(4) Hartree, D. R., "On an Equation Occurring in Falkner and Skan's
Approximate Treatment of the Equations of the Boundary Layer," Proc.
Camb. Phil. Soc., Vol. 33, 1937, pp. 223-239.

(5) Wylie, C. R., "Advanced Engineering Mathematics," McGraw-Hill Book Co.,
Inc., 1951, pp. 530-531.

(6) Yohner, Peggy L., and Hansen, Arthur G., "Some Numerical Solutions of
Similarity Equations for Three-Dimensional Laminar Incompressible

Boundary-Layer Flows," NACA TN 4370, 1958.



18

(7) Smith, A. M. O., "Improved Solutions of the Falkner and Skan Boundary-
Layer Equation," Sherman M. Fairchild Fund Paper No. FF-10, Institute
of the Aeronautical Science, March 1964.

(8) Ostrach, Simon, "An Analysis of Laminar Free-Convection Flow and Heat
Transfer About a Flat Plate Parallel to the Direction of the Generating

Body Force," NACA Rep. 1111, 1953.




19

TABLE I. - CONVERGENCE HISTORY OF
INITIAL VALUES
(a) Example 1
Trial|Correction | ngtop £"(0)
1 2.0 |1.0
2 1 2.0 |1.2463981
3 2 5.0 11.2266764
4 3 5.0 11.2326729
5 4 5.0 11.2325878
5 1.2325878
Published values
Source Natop £"(0)
Radbill (ref. 2) | 5.0 |1.2397
Yohner and Hansen
(ref. 6) 4.0 |1.2325876
(v) Example 2
Trial |Correction Nstop £"(0) h'(0)
1 - 2.0 [1.0 (1.0
2 1l 2.0 61735605 | -.59008297
3 2 8.0 .63211384 | -.57655550
4 3 8.0 .66795925 | -.52593128
5 4 8.0 .67387305 | -.50916398
6 5 8.0 .67412049 | -.50790411
7 6 8.0 .67412438 | -.50789273
7 .67412438 | -.50789273
Published values
Source Nstop £"(0) | h'(0)
Ostrach 0.6741]-0.5080
(ref. 8) !
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